构建基础智能体
首先创建一个能够回答问题并调用工具的简单智能体。该智能体将使用Claude Sonnet 4.5作为其语言模型,一个基础的天气函数作为工具,以及一个简单的提示来指导其行为。Copy
import { createAgent, tool } from "langchain";
import * as z from "zod";
const getWeather = tool(
(input) => `It's always sunny in ${input.city}!`,
{
name: "get_weather",
description: "Get the weather for a given city",
schema: z.object({
city: z.string().describe("The city to get the weather for"),
}),
}
);
const agent = createAgent({
model: "anthropic:claude-sonnet-4-5",
tools: [getWeather],
});
console.log(
await agent.invoke({
messages: [{ role: "user", content: "What's the weather in Tokyo?" }],
})
);
对于此示例,您需要设置一个Claude (Anthropic)账户并获取API密钥。然后,在终端中设置
ANTHROPIC_API_KEY环境变量。构建真实场景智能体
接下来构建一个实用的天气预报智能体,展示关键的生产概念:- 详细的系统提示以改善智能体行为
- 创建工具与外部数据集成
- 模型配置以获得一致的响应
- 结构化输出以获得可预测的结果
- 对话记忆用于类似聊天的交互
- 创建并运行智能体创建一个功能完整的智能体
1
定义系统提示
系统提示定义了智能体的角色和行为。保持其具体且可操作:
Copy
const systemPrompt = `You are an expert weather forecaster, who speaks in puns.
You have access to two tools:
- get_weather_for_location: use this to get the weather for a specific location
- get_user_location: use this to get the user's location
If a user asks you for the weather, make sure you know the location. If you can tell from the question that they mean wherever they are, use the get_user_location tool to find their location.`;
2
创建工具
工具是您的智能体可以调用的函数。通常,工具会希望连接到外部系统,并将依赖运行时配置来实现这一点。请注意这里的
getUserLocation工具正是这样做的:Copy
import { type Runtime } from "@langchain/langgraph";
import { tool } from "langchain";
import * as z from "zod";
const getWeather = tool(
(input) => `It's always sunny in ${input.city}!`,
{
name: "get_weather_for_location",
description: "Get the weather for a given city",
schema: z.object({
city: z.string().describe("The city to get the weather for"),
}),
}
);
type AgentRuntime = Runtime<{ user_id: string }>;
const getUserLocation = tool(
(_, config: AgentRuntime) => {
const { user_id } = config.context;
return user_id === "1" ? "Florida" : "SF";
},
{
name: "get_user_location",
description: "Retrieve user information based on user ID",
}
);
Zod是一个用于验证和解析预定义模式的库。您可以使用它来定义工具的输入模式,以确保智能体仅使用正确的参数调用工具。或者,您可以将
schema属性定义为JSON schema对象。请注意,JSON模式不会在运行时被验证。示例:使用JSON schema定义工具输入
示例:使用JSON schema定义工具输入
Copy
const getWeather = tool(
({ city }) => `It's always sunny in ${city}!`,
{
name: "get_weather_for_location",
description: "Get the weather for a given city",
schema: {
type: "object",
properties: {
city: {
type: "string",
description: "The city to get the weather for"
}
},
required: ["city"]
},
}
);
3
4
定义响应格式
如果需要智能体响应匹配特定模式,可以选择定义结构化响应格式。
Copy
const responseFormat = z.object({
punny_response: z.string(),
weather_conditions: z.string().optional(),
});
5
6
创建并运行智能体
现在使用所有组件组装您的智能体并运行它!
Copy
import { createAgent } from "langchain";
const agent = createAgent({
model: "anthropic:claude-sonnet-4-5",
prompt: systemPrompt,
tools: [getUserLocation, getWeather],
responseFormat,
checkpointer,
});
// `thread_id`是给定对话的唯一标识符。
const config = {
configurable: { thread_id: "1" },
context: { user_id: "1" },
};
const response = await agent.invoke(
{ messages: [{ role: "user", content: "what is the weather outside?" }] },
config
);
console.log(response.structuredResponse);
// {
// punny_response: "Florida is still having a 'sun-derful' day ...",
// weather_conditions: "It's always sunny in Florida!"
// }
// 注意,我们可以使用相同的`thread_id`继续对话。
const thankYouResponse = await agent.invoke(
{ messages: [{ role: "user", content: "thank you!" }] },
config
);
console.log(thankYouResponse.structuredResponse);
// {
// punny_response: "You're 'thund-erfully' welcome! ...",
// weather_conditions: undefined
// }
Show 完整示例代码
Show 完整示例代码
Copy
import { createAgent, tool, initChatModel } from "langchain";
import { MemorySaver, type Runtime } from "@langchain/langgraph";
import * as z from "zod";
// Define system prompt
const systemPrompt = `You are an expert weather forecaster, who speaks in puns.
You have access to two tools:
- get_weather_for_location: use this to get the weather for a specific location
- get_user_location: use this to get the user's location
If a user asks you for the weather, make sure you know the location. If you can tell from the question that they mean wherever they are, use the get_user_location tool to find their location.`;
// Define tools
const getWeather = tool(
({ city }) => `It's always sunny in ${city}!`,
{
name: "get_weather_for_location",
description: "Get the weather for a given city",
schema: z.object({
city: z.string(),
}),
}
);
const getUserLocation = tool(
(_, config: Runtime<{ user_id: string}>) => {
const { user_id } = config.context;
return user_id === "1" ? "Florida" : "SF";
},
{
name: "get_user_location",
description: "Retrieve user information based on user ID",
schema: z.object({}),
}
);
// Configure model
const model = await initChatModel(
"anthropic:claude-sonnet-4-5",
{ temperature: 0 }
);
// Define response format
const responseFormat = z.object({
punny_response: z.string(),
weather_conditions: z.string().optional(),
});
// Set up memory
const checkpointer = new MemorySaver();
// Create agent
const agent = createAgent({
model: "anthropic:claude-sonnet-4-5",
prompt: systemPrompt,
tools: [getUserLocation, getWeather],
responseFormat,
checkpointer,
});
// Run agent
// `thread_id` is a unique identifier for a given conversation.
const config = {
configurable: { thread_id: "1" },
context: { user_id: "1" },
};
const response = await agent.invoke(
{ messages: [{ role: "user", content: "what is the weather outside?" }] },
config
);
console.log(response.structuredResponse);
// {
// punny_response: "Florida is still having a 'sun-derful' day! The sunshine is playing 'ray-dio' hits all day long! I'd say it's the perfect weather for some 'solar-bration'! If you were hoping for rain, I'm afraid that idea is all 'washed up' - the forecast remains 'clear-ly' brilliant!",
// weather_conditions: "It's always sunny in Florida!"
// }
// Note that we can continue the conversation using the same `thread_id`.
const thankYouResponse = await agent.invoke(
{ messages: [{ role: "user", content: "thank you!" }] },
config
);
console.log(thankYouResponse.structuredResponse);
// {
// punny_response: "You're 'thund-erfully' welcome! It's always a 'breeze' to help you stay 'current' with the weather. I'm just 'cloud'-ing around waiting to 'shower' you with more forecasts whenever you need them. Have a 'sun-sational' day in the Florida sunshine!",
// weather_conditions: undefined
// }
- 理解上下文并记住对话
- 智能使用多个工具
- 以一致格式提供结构化响应
- 通过上下文处理用户特定信息
- 在交互间维护对话状态的AI智能体
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.