概述
构建智能体(或任何LLM应用)的难点在于使其足够可靠。虽然它们可能在原型中工作,但在实际使用案例中常常失败。智能体为何失败?
当智能体失败时,通常是因为智能体内部的LLM调用采取了错误的行动/没有达到我们的预期。LLM失败的原因有两个:- 底层LLM能力不足
- 没有将”正确的”上下文传递给LLM
刚接触上下文工程?请从概念概述开始,了解不同类型的上下文及其使用时机。
智能体循环
典型的智能体循环包括两个主要步骤:- 模型调用 - 使用提示和可用工具调用LLM,返回响应或执行工具的请求
- 工具执行 - 执行LLM请求的工具,返回工具结果

您可以控制的内容
为了构建可靠的智能体,您需要控制智能体循环每一步发生的情况,以及步骤之间发生的情况。瞬态上下文
LLM单次调用所看到的内容。您可以在不改变状态中保存内容的情况下修改消息、工具或提示。
持久上下文
跨轮次保存在状态中的内容。生命周期钩子和工具写入会永久修改此内容。
数据源
在整个过程中,您的智能体访问(读取/写入)不同的数据源:| 数据源 | 亦称 | 范围 | 示例 |
|---|---|---|---|
| 运行时上下文 | 静态配置 | 会话范围 | 用户ID、API密钥、数据库连接、权限、环境设置 |
| 状态 | 短期记忆 | 会话范围 | 当前消息、上传的文件、认证状态、工具结果 |
| 存储 | 长期记忆 | 跨会话 | 用户偏好、提取的见解、记忆、历史数据 |
工作原理
LangChain的中间件是底层机制,使得使用LangChain的开发者能够实际进行上下文工程。 中间件允许您钩入智能体生命周期的任何步骤,并:- 更新上下文
- 跳转到智能体生命周期中的不同步骤
模型上下文
控制每次模型调用的输入内容 - 指令、可用工具、使用哪个模型以及输出格式。这些决策直接影响可靠性和成本。 所有这些类型的模型上下文都可以从状态(短期记忆)、存储(长期记忆)或运行时上下文(静态配置)中获取。系统提示
系统提示设置LLM的行为和能力。不同的用户、上下文或对话阶段需要不同的指令。成功的智能体利用记忆、偏好和配置来为对话的当前状态提供正确的指令。- 状态
- 存储
- 运行时上下文
从状态访问消息计数或对话上下文:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import dynamic_prompt, ModelRequest
@dynamic_prompt
def state_aware_prompt(request: ModelRequest) -> str:
# request.messages is a shortcut for request.state["messages"]
message_count = len(request.messages)
base = "You are a helpful assistant."
if message_count > 10:
base += "\nThis is a long conversation - be extra concise."
return base
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[state_aware_prompt]
)
从长期记忆中访问用户偏好:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import dynamic_prompt, ModelRequest
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
@dynamic_prompt
def store_aware_prompt(request: ModelRequest) -> str:
user_id = request.runtime.context.user_id
# Read from Store: get user preferences
store = request.runtime.store
user_prefs = store.get(("preferences",), user_id)
base = "You are a helpful assistant."
if user_prefs:
style = user_prefs.value.get("communication_style", "balanced")
base += f"\nUser prefers {style} responses."
return base
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[store_aware_prompt],
context_schema=Context,
store=InMemoryStore()
)
从运行时上下文访问用户ID或配置:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import dynamic_prompt, ModelRequest
@dataclass
class Context:
user_role: str
deployment_env: str
@dynamic_prompt
def context_aware_prompt(request: ModelRequest) -> str:
# Read from Runtime Context: user role and environment
user_role = request.runtime.context.user_role
env = request.runtime.context.deployment_env
base = "You are a helpful assistant."
if user_role == "admin":
base += "\nYou have admin access. You can perform all operations."
elif user_role == "viewer":
base += "\nYou have read-only access. Guide users to read operations only."
if env == "production":
base += "\nBe extra careful with any data modifications."
return base
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[context_aware_prompt],
context_schema=Context
)
消息
消息构成了发送给LLM的提示。 管理消息的内容对于确保LLM拥有正确的信息以良好响应至关重要。- 状态
- 存储
- 运行时上下文
当与当前查询相关时,从状态注入上传的文件上下文:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
@wrap_model_call
def inject_file_context(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Inject context about files user has uploaded this session."""
# Read from State: get uploaded files metadata
uploaded_files = request.state.get("uploaded_files", [])
if uploaded_files:
# Build context about available files
file_descriptions = []
for file in uploaded_files:
file_descriptions.append(
f"- {file['name']} ({file['type']}): {file['summary']}"
)
file_context = f"""Files you have access to in this conversation:
{chr(10).join(file_descriptions)}
Reference these files when answering questions."""
# Inject file context before recent messages
messages = [
*request.messages
{"role": "user", "content": file_context},
]
request = request.override(messages=messages)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[inject_file_context]
)
从存储中注入用户的电子邮件写作风格以指导草稿撰写:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
@wrap_model_call
def inject_writing_style(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Inject user's email writing style from Store."""
user_id = request.runtime.context.user_id
# Read from Store: get user's writing style examples
store = request.runtime.store
writing_style = store.get(("writing_style",), user_id)
if writing_style:
style = writing_style.value
# Build style guide from stored examples
style_context = f"""Your writing style:
- Tone: {style.get('tone', 'professional')}
- Typical greeting: "{style.get('greeting', 'Hi')}"
- Typical sign-off: "{style.get('sign_off', 'Best')}"
- Example email you've written:
{style.get('example_email', '')}"""
# Append at end - models pay more attention to final messages
messages = [
*request.messages,
{"role": "user", "content": style_context}
]
request = request.override(messages=messages)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[inject_writing_style],
context_schema=Context,
store=InMemoryStore()
)
根据用户的管辖区域从运行时上下文注入合规规则:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
@dataclass
class Context:
user_jurisdiction: str
industry: str
compliance_frameworks: list[str]
@wrap_model_call
def inject_compliance_rules(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Inject compliance constraints from Runtime Context."""
# Read from Runtime Context: get compliance requirements
jurisdiction = request.runtime.context.user_jurisdiction
industry = request.runtime.context.industry
frameworks = request.runtime.context.compliance_frameworks
# Build compliance constraints
rules = []
if "GDPR" in frameworks:
rules.append("- Must obtain explicit consent before processing personal data")
rules.append("- Users have right to data deletion")
if "HIPAA" in frameworks:
rules.append("- Cannot share patient health information without authorization")
rules.append("- Must use secure, encrypted communication")
if industry == "finance":
rules.append("- Cannot provide financial advice without proper disclaimers")
if rules:
compliance_context = f"""Compliance requirements for {jurisdiction}:
{chr(10).join(rules)}"""
# Append at end - models pay more attention to final messages
messages = [
*request.messages,
{"role": "user", "content": compliance_context}
]
request = request.override(messages=messages)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[inject_compliance_rules],
context_schema=Context
)
工具
工具让模型能够与数据库、API和外部系统交互。您定义和选择工具的方式直接影响模型能否有效完成任务。定义工具
每个工具都需要清晰的名称、描述、参数名称和参数描述。这些不仅仅是元数据 - 它们指导模型关于何时以及如何使用工具的推理。Copy
from langchain.tools import tool
@tool(parse_docstring=True)
def search_orders(
user_id: str,
status: str,
limit: int = 10
) -> str:
"""Search for user orders by status.
Use this when the user asks about order history or wants to check
order status. Always filter by the provided status.
Args:
user_id: Unique identifier for the user
status: Order status: 'pending', 'shipped', or 'delivered'
limit: Maximum number of results to return
"""
# Implementation here
pass
选择工具
并非每个工具都适用于所有情况。工具过多可能会使模型不堪重负(上下文过载)并增加错误;工具过少则会限制能力。动态工具选择基于认证状态、用户权限、功能标志或对话阶段来调整可用工具集。- 状态
- 存储
- 运行时上下文
仅在达到特定对话里程碑后启用高级工具:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
@wrap_model_call
def state_based_tools(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Filter tools based on conversation State."""
# Read from State: check if user has authenticated
state = request.state
is_authenticated = state.get("authenticated", False)
message_count = len(state["messages"])
# Only enable sensitive tools after authentication
if not is_authenticated:
tools = [t for t in request.tools if t.name.startswith("public_")]
request = request.override(tools=tools)
elif message_count < 5:
# Limit tools early in conversation
tools = [t for t in request.tools if t.name != "advanced_search"]
request = request.override(tools=tools)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[public_search, private_search, advanced_search],
middleware=[state_based_tools]
)
基于存储中的用户偏好或功能标志过滤工具:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
@wrap_model_call
def store_based_tools(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Filter tools based on Store preferences."""
user_id = request.runtime.context.user_id
# Read from Store: get user's enabled features
store = request.runtime.store
feature_flags = store.get(("features",), user_id)
if feature_flags:
enabled_features = feature_flags.value.get("enabled_tools", [])
# Only include tools that are enabled for this user
tools = [t for t in request.tools if t.name in enabled_features]
request = request.override(tools=tools)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[search_tool, analysis_tool, export_tool],
middleware=[store_based_tools],
context_schema=Context,
store=InMemoryStore()
)
基于运行时上下文中的用户权限过滤工具:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from typing import Callable
@dataclass
class Context:
user_role: str
@wrap_model_call
def context_based_tools(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Filter tools based on Runtime Context permissions."""
# Read from Runtime Context: get user role
user_role = request.runtime.context.user_role
if user_role == "admin":
# Admins get all tools
pass
elif user_role == "editor":
# Editors can't delete
tools = [t for t in request.tools if t.name != "delete_data"]
request = request.override(tools=tools)
else:
# Viewers get read-only tools
tools = [t for t in request.tools if t.name.startswith("read_")]
request = request.override(tools=tools)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[read_data, write_data, delete_data],
middleware=[context_based_tools],
context_schema=Context
)
模型
不同的模型具有不同的优势、成本和上下文窗口。为当前任务选择合适的模型,这可能在智能体运行期间发生变化。- 状态
- 存储
- 运行时上下文
基于状态中的对话长度使用不同的模型:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from langchain.chat_models import init_chat_model
from typing import Callable
# Initialize models once outside the middleware
large_model = init_chat_model("anthropic:claude-sonnet-4-5")
standard_model = init_chat_model("openai:gpt-4o")
efficient_model = init_chat_model("openai:gpt-4o-mini")
@wrap_model_call
def state_based_model(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select model based on State conversation length."""
# request.messages is a shortcut for request.state["messages"]
message_count = len(request.messages)
if message_count > 20:
# Long conversation - use model with larger context window
model = large_model
elif message_count > 10:
# Medium conversation
model = standard_model
else:
# Short conversation - use efficient model
model = efficient_model
request = request.override(model=model)
return handler(request)
agent = create_agent(
model="openai:gpt-4o-mini",
tools=[...],
middleware=[state_based_model]
)
使用存储中用户偏好的模型:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from langchain.chat_models import init_chat_model
from typing import Callable
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
# Initialize available models once
MODEL_MAP = {
"gpt-4o": init_chat_model("openai:gpt-4o"),
"gpt-4o-mini": init_chat_model("openai:gpt-4o-mini"),
"claude-sonnet": init_chat_model("anthropic:claude-sonnet-4-5"),
}
@wrap_model_call
def store_based_model(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select model based on Store preferences."""
user_id = request.runtime.context.user_id
# Read from Store: get user's preferred model
store = request.runtime.store
user_prefs = store.get(("preferences",), user_id)
if user_prefs:
preferred_model = user_prefs.value.get("preferred_model")
if preferred_model and preferred_model in MODEL_MAP:
request = request.override(model=MODEL_MAP[preferred_model])
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[store_based_model],
context_schema=Context,
store=InMemoryStore()
)
基于运行时上下文中的成本限制或环境选择模型:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from langchain.chat_models import init_chat_model
from typing import Callable
@dataclass
class Context:
cost_tier: str
environment: str
# Initialize models once outside the middleware
premium_model = init_chat_model("anthropic:claude-sonnet-4-5")
standard_model = init_chat_model("openai:gpt-4o")
budget_model = init_chat_model("openai:gpt-4o-mini")
@wrap_model_call
def context_based_model(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select model based on Runtime Context."""
# Read from Runtime Context: cost tier and environment
cost_tier = request.runtime.context.cost_tier
environment = request.runtime.context.environment
if environment == "production" and cost_tier == "premium":
# Production premium users get best model
model = premium_model
elif cost_tier == "budget":
# Budget tier gets efficient model
model = budget_model
else:
# Standard tier
model = standard_model
request = request.override(model=model)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[context_based_model],
context_schema=Context
)
响应格式
结构化输出将非结构化文本转换为经过验证的结构化数据。当提取特定字段或为下游系统返回数据时,自由格式的文本是不够的。 工作原理: 当您提供模式作为响应格式时,模型的最终响应保证符合该模式。智能体运行模型/工具调用循环,直到模型完成工具调用,然后将最终响应强制转换为提供的格式。定义格式
模式定义指导模型。字段名称、类型和描述确切指定输出应遵循的格式。Copy
from pydantic import BaseModel, Field
class CustomerSupportTicket(BaseModel):
"""Structured ticket information extracted from customer message."""
category: str = Field(
description="Issue category: 'billing', 'technical', 'account', or 'product'"
)
priority: str = Field(
description="Urgency level: 'low', 'medium', 'high', or 'critical'"
)
summary: str = Field(
description="One-sentence summary of the customer's issue"
)
customer_sentiment: str = Field(
description="Customer's emotional tone: 'frustrated', 'neutral', or 'satisfied'"
)
选择格式
动态响应格式选择基于用户偏好、对话阶段或角色调整模式 - 早期返回简单格式,随着复杂性增加返回详细格式。- 状态
- 存储
- 运行时上下文
基于对话状态配置结构化输出:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from pydantic import BaseModel, Field
from typing import Callable
class SimpleResponse(BaseModel):
"""Simple response for early conversation."""
answer: str = Field(description="A brief answer")
class DetailedResponse(BaseModel):
"""Detailed response for established conversation."""
answer: str = Field(description="A detailed answer")
reasoning: str = Field(description="Explanation of reasoning")
confidence: float = Field(description="Confidence score 0-1")
@wrap_model_call
def state_based_output(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select output format based on State."""
# request.messages is a shortcut for request.state["messages"]
message_count = len(request.messages)
if message_count < 3:
# Early conversation - use simple format
request = request.override(response_format=SimpleResponse)
else:
# Established conversation - use detailed format
request = request.override(response_format=DetailedResponse)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[state_based_output]
)
基于存储中的用户偏好配置输出格式:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from pydantic import BaseModel, Field
from typing import Callable
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
class VerboseResponse(BaseModel):
"""Verbose response with details."""
answer: str = Field(description="Detailed answer")
sources: list[str] = Field(description="Sources used")
class ConciseResponse(BaseModel):
"""Concise response."""
answer: str = Field(description="Brief answer")
@wrap_model_call
def store_based_output(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select output format based on Store preferences."""
user_id = request.runtime.context.user_id
# Read from Store: get user's preferred response style
store = request.runtime.store
user_prefs = store.get(("preferences",), user_id)
if user_prefs:
style = user_prefs.value.get("response_style", "concise")
if style == "verbose":
request = request.override(response_format=VerboseResponse)
else:
request = request.override(response_format=ConciseResponse)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[store_based_output],
context_schema=Context,
store=InMemoryStore()
)
基于运行时上下文(如用户角色或环境)配置输出格式:
Copy
from dataclasses import dataclass
from langchain.agents import create_agent
from langchain.agents.middleware import wrap_model_call, ModelRequest, ModelResponse
from pydantic import BaseModel, Field
from typing import Callable
@dataclass
class Context:
user_role: str
environment: str
class AdminResponse(BaseModel):
"""Response with technical details for admins."""
answer: str = Field(description="Answer")
debug_info: dict = Field(description="Debug information")
system_status: str = Field(description="System status")
class UserResponse(BaseModel):
"""Simple response for regular users."""
answer: str = Field(description="Answer")
@wrap_model_call
def context_based_output(
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse]
) -> ModelResponse:
"""Select output format based on Runtime Context."""
# Read from Runtime Context: user role and environment
user_role = request.runtime.context.user_role
environment = request.runtime.context.environment
if user_role == "admin" and environment == "production":
# Admins in production get detailed output
request = request.override(response_format=AdminResponse)
else:
# Regular users get simple output
request = request.override(response_format=UserResponse)
return handler(request)
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[context_based_output],
context_schema=Context
)
工具上下文
工具的特殊之处在于它们既读取又写入上下文。 在最基本的情况下,当工具执行时,它接收LLM的请求参数并返回工具消息。工具完成其工作并产生结果。 工具还可以为模型获取重要信息,使其能够执行和完成任务。读取
大多数现实世界的工具需要的不仅仅是LLM的参数。它们需要用户ID用于数据库查询、API密钥用于外部服务或当前会话状态以做出决策。工具从状态、存储和运行时上下文读取以访问此信息。- 状态
- 存储
- 运行时上下文
从状态读取以检查当前会话信息:
Copy
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
@tool
def check_authentication(
runtime: ToolRuntime
) -> str:
"""Check if user is authenticated."""
# Read from State: check current auth status
current_state = runtime.state
is_authenticated = current_state.get("authenticated", False)
if is_authenticated:
return "User is authenticated"
else:
return "User is not authenticated"
agent = create_agent(
model="openai:gpt-4o",
tools=[check_authentication]
)
从存储读取以访问持久化的用户偏好:
Copy
from dataclasses import dataclass
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
@tool
def get_preference(
preference_key: str,
runtime: ToolRuntime[Context]
) -> str:
"""Get user preference from Store."""
user_id = runtime.context.user_id
# Read from Store: get existing preferences
store = runtime.store
existing_prefs = store.get(("preferences",), user_id)
if existing_prefs:
value = existing_prefs.value.get(preference_key)
return f"{preference_key}: {value}" if value else f"No preference set for {preference_key}"
else:
return "No preferences found"
agent = create_agent(
model="openai:gpt-4o",
tools=[get_preference],
context_schema=Context,
store=InMemoryStore()
)
从运行时上下文读取配置,如API密钥和用户ID:
Copy
from dataclasses import dataclass
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
@dataclass
class Context:
user_id: str
api_key: str
db_connection: str
@tool
def fetch_user_data(
query: str,
runtime: ToolRuntime[Context]
) -> str:
"""Fetch data using Runtime Context configuration."""
# Read from Runtime Context: get API key and DB connection
user_id = runtime.context.user_id
api_key = runtime.context.api_key
db_connection = runtime.context.db_connection
# Use configuration to fetch data
results = perform_database_query(db_connection, query, api_key)
return f"Found {len(results)} results for user {user_id}"
agent = create_agent(
model="openai:gpt-4o",
tools=[fetch_user_data],
context_schema=Context
)
# Invoke with runtime context
result = agent.invoke(
{"messages": [{"role": "user", "content": "Get my data"}]},
context=Context(
user_id="user_123",
api_key="sk-...",
db_connection="postgresql://..."
)
)
写入
工具结果可用于帮助智能体完成给定任务。工具既可以直接将结果返回给模型,也可以更新智能体的记忆,使重要上下文可用于未来步骤。- 状态
- 存储
使用Command写入状态以跟踪会话特定信息:
Copy
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
from langgraph.types import Command
@tool
def authenticate_user(
password: str,
runtime: ToolRuntime
) -> Command:
"""Authenticate user and update State."""
# Perform authentication (simplified)
if password == "correct":
# Write to State: mark as authenticated using Command
return Command(
update={"authenticated": True},
)
else:
return Command(update={"authenticated": False})
agent = create_agent(
model="openai:gpt-4o",
tools=[authenticate_user]
)
写入存储以跨会话持久化数据:
Copy
from dataclasses import dataclass
from langchain.tools import tool, ToolRuntime
from langchain.agents import create_agent
from langgraph.store.memory import InMemoryStore
@dataclass
class Context:
user_id: str
@tool
def save_preference(
preference_key: str,
preference_value: str,
runtime: ToolRuntime[Context]
) -> str:
"""Save user preference to Store."""
user_id = runtime.context.user_id
# Read existing preferences
store = runtime.store
existing_prefs = store.get(("preferences",), user_id)
# Merge with new preference
prefs = existing_prefs.value if existing_prefs else {}
prefs[preference_key] = preference_value
# Write to Store: save updated preferences
store.put(("preferences",), user_id, prefs)
return f"Saved preference: {preference_key} = {preference_value}"
agent = create_agent(
model="openai:gpt-4o",
tools=[save_preference],
context_schema=Context,
store=InMemoryStore()
)
生命周期上下文
控制核心智能体步骤之间发生的情况 - 拦截数据流以实现横切关注点,如摘要、防护栏和日志记录。 正如您在模型上下文和工具上下文中所见,中间件是使上下文工程切实可行的机制。中间件允许您钩入智能体生命周期中的任何步骤,并:- 更新上下文 - 修改状态和存储以持久化更改、更新对话历史或保存见解
- 在生命周期中跳转 - 基于上下文移动到智能体循环中的不同步骤(例如,如果满足条件则跳过工具执行,使用修改后的上下文重复模型调用)

示例:摘要
最常见的生命周期模式之一是在对话历史过长时自动压缩。与模型上下文中显示的瞬态消息修剪不同,摘要持久更新状态 - 永久用摘要替换旧消息,该摘要将保存用于所有未来轮次。 LangChain为此提供了内置中间件:Copy
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware
agent = create_agent(
model="openai:gpt-4o",
tools=[...],
middleware=[
SummarizationMiddleware(
model="openai:gpt-4o-mini",
max_tokens_before_summary=4000, # 在4000个标记时触发摘要
messages_to_keep=20, # 摘要后保留最后20条消息
),
],
)
SummarizationMiddleware 自动:
- 使用单独的LLM调用汇总较早的消息
- 用状态中的摘要消息替换它们(永久)
- 保留最近的消息以保持上下文
有关内置中间件的完整列表、可用钩子以及如何创建自定义中间件,请参阅中间件文档。
最佳实践
- 从简单开始 - 从静态提示和工具开始,仅在需要时添加动态功能
- 增量测试 - 一次添加一个上下文工程功能
- 监控性能 - 跟踪模型调用、标记使用和延迟
- 使用内置中间件 - 利用
SummarizationMiddleware、LLMToolSelectorMiddleware等 - 记录您的上下文策略 - 清晰说明正在传递什么上下文以及原因
- 理解瞬态与持久:模型上下文更改是瞬态的(每次调用),而生命周期上下文更改持久保存到状态
相关资源
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.