概述
LangChain 的流式传输系统允许您将智能体运行的实时反馈展示给您的应用程序。 使用 LangChain 流式传输可以实现的功能:- 流式传输智能体进度 — 在每次智能体步骤后获取状态更新。
- 流式传输 LLM 令牌 — 在语言模型令牌生成时即进行流式传输。
- 流式传输自定义更新 — 发出用户定义的信号(例如,
"已获取 10/100 条记录")。 - 流式传输多种模式 — 从
updates(智能体进度)、messages(LLM 令牌 + 元数据)或custom(任意用户数据)中选择。
智能体进度
要流式传输智能体进度,请使用stream 或 astream 方法并设置 stream_mode="updates"。这会在每次智能体步骤后发出一个事件。
例如,如果您有一个调用一次工具的智能体,您应该会看到以下更新:
- LLM 节点:带有工具调用请求的
AIMessage - 工具节点:带有执行结果的
ToolMessage - LLM 节点:最终的 AI 响应
Streaming agent progress
Copy
from langchain.agents import create_agent
def get_weather(city: str) -> str:
"""Get weather for a given city."""
return f"It's always sunny in {city}!"
agent = create_agent(
model="openai:gpt-5-nano",
tools=[get_weather],
)
for chunk in agent.stream(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
stream_mode="updates",
):
for step, data in chunk.items():
print(f"step: {step}")
print(f"content: {data['messages'][-1].content_blocks}")
Output
Copy
step: model
content: [{'type': 'tool_call', 'name': 'get_weather', 'args': {'city': 'San Francisco'}, 'id': 'call_OW2NYNsNSKhRZpjW0wm2Aszd'}]
step: tools
content: [{'type': 'text', 'text': "It's always sunny in San Francisco!"}]
step: model
content: [{'type': 'text', 'text': 'It's always sunny in San Francisco!'}]
LLM 令牌
要流式传输由 LLM 生成的令牌,请使用stream_mode="messages"。下方您可以看到智能体流式传输工具调用和最终响应的输出。
Streaming LLM tokens
Copy
from langchain.agents import create_agent
def get_weather(city: str) -> str:
"""Get weather for a given city."""
return f"It's always sunny in {city}!"
agent = create_agent(
model="openai:gpt-5-nano",
tools=[get_weather],
)
for token, metadata in agent.stream(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
stream_mode="messages",
):
print(f"node: {metadata['langgraph_node']}")
print(f"content: {token.content_blocks}")
print("\n")
Output
Copy
node: model
content: [{'type': 'tool_call_chunk', 'id': 'call_vbCyBcP8VuneUzyYlSBZZsVa', 'name': 'get_weather', 'args': '', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '{"', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': 'city', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '":"', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': 'San', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': ' Francisco', 'index': 0}]
node: model
content: [{'type': 'tool_call_chunk', 'id': None, 'name': None, 'args': '"}', 'index': 0}]
node: model
content: []
node: tools
content: [{'type': 'text', 'text': "It's always sunny in San Francisco!"}]
node: model
content: []
node: model
content: [{'type': 'text', 'text': 'Here'}]
node: model
content: [{'type': 'text', 'text': ''s'}]
node: model
content: [{'type': 'text', 'text': ' what'}]
node: model
content: [{'type': 'text', 'text': ' I'}]
node: model
content: [{'type': 'text', 'text': ' got'}]
node: model
content: [{'type': 'text', 'text': ':'}]
node: model
content: [{'type': 'text', 'text': ' "'}]
node: model
content: [{'type': 'text', 'text': "It's"}]
node: model
content: [{'type': 'text', 'text': ' always'}]
node: model
content: [{'type': 'text', 'text': ' sunny'}]
node: model
content: [{'type': 'text', 'text': ' in'}]
node: model
content: [{'type': 'text', 'text': ' San'}]
node: model
content: [{'type': 'text', 'text': ' Francisco'}]
node: model
content: [{'type': 'text', 'text': '!"\n\n'}]
自定义更新
要流式传输工具执行时的更新,您可以使用get_stream_writer。
Streaming custom updates
Copy
from langchain.agents import create_agent
from langgraph.config import get_stream_writer
def get_weather(city: str) -> str:
"""Get weather for a given city."""
writer = get_stream_writer()
# 流式传输任意数据
writer(f"Looking up data for city: {city}")
writer(f"Acquired data for city: {city}")
return f"It's always sunny in {city}!"
agent = create_agent(
model="anthropic:claude-sonnet-4-5",
tools=[get_weather],
)
for chunk in agent.stream(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
stream_mode="custom"
):
print(chunk)
Output
Copy
Looking up data for city: San Francisco
Acquired data for city: San Francisco
如果您在工具内部添加了
get_stream_writer,那么您将无法在 LangGraph 执行上下文之外调用该工具。流式传输多种模式
您可以通过将流模式作为列表传递来指定多种流式传输模式:stream_mode=["updates", "custom"]:
Streaming multiple modes
Copy
from langchain.agents import create_agent
from langgraph.config import get_stream_writer
def get_weather(city: str) -> str:
"""Get weather for a given city."""
writer = get_stream_writer()
writer(f"Looking up data for city: {city}")
writer(f"Acquired data for city: {city}")
return f"It's always sunny in {city}!"
agent = create_agent(
model="openai:gpt-5-nano",
tools=[get_weather],
)
for stream_mode, chunk in agent.stream(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
stream_mode=["updates", "custom"]
):
print(f"stream_mode: {stream_mode}")
print(f"content: {chunk}")
print("\n")
Output
Copy
stream_mode: updates
content: {'model': {'messages': [AIMessage(content='', response_metadata={'token_usage': {'completion_tokens': 280, 'prompt_tokens': 132, 'total_tokens': 412, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 256, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_provider': 'openai', 'model_name': 'gpt-5-nano-2025-08-07', 'system_fingerprint': None, 'id': 'chatcmpl-C9tlgBzGEbedGYxZ0rTCz5F7OXpL7', 'service_tier': 'default', 'finish_reason': 'tool_calls', 'logprobs': None}, id='lc_run--480c07cb-e405-4411-aa7f-0520fddeed66-0', tool_calls=[{'name': 'get_weather', 'args': {'city': 'San Francisco'}, 'id': 'call_KTNQIftMrl9vgNwEfAJMVu7r', 'type': 'tool_call'}], usage_metadata={'input_tokens': 132, 'output_tokens': 280, 'total_tokens': 412, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 256}})]}}
stream_mode: custom
content: Looking up data for city: San Francisco
stream_mode: custom
content: Acquired data for city: San Francisco
stream_mode: updates
content: {'tools': {'messages': [ToolMessage(content="It's always sunny in San Francisco!", name='get_weather', tool_call_id='call_KTNQIftMrl9vgNwEfAJMVu7r')]}}
stream_mode: updates
content: {'model': {'messages': [AIMessage(content='San Francisco weather: It's always sunny in San Francisco!\n\n', response_metadata={'token_usage': {'completion_tokens': 764, 'prompt_tokens': 168, 'total_tokens': 932, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 704, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_provider': 'openai', 'model_name': 'gpt-5-nano-2025-08-07', 'system_fingerprint': None, 'id': 'chatcmpl-C9tljDFVki1e1haCyikBptAuXuHYG', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='lc_run--acbc740a-18fe-4a14-8619-da92a0d0ee90-0', usage_metadata={'input_tokens': 168, 'output_tokens': 764, 'total_tokens': 932, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 704}})]}}
禁用流式传输
在某些应用程序中,您可能需要为给定模型禁用单个令牌的流式传输。 这在多智能体系统中非常有用,可以控制哪些智能体流式传输其输出。 请参阅模型指南以了解如何禁用流式传输。Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.