概述
记忆是一个能够记住先前交互信息的系统。对于AI智能体而言,记忆至关重要,因为它能让智能体记住之前的交互、从反馈中学习并适应用户偏好。随着智能体处理更复杂的任务和大量用户交互,这种能力对于效率和用户满意度都变得至关重要。 短期记忆使您的应用程序能够记住单个线程或对话中的先前交互。线程在一个会话中组织多次交互,类似于电子邮件将消息分组在单个对话中的方式。
使用方法
要为智能体添加短期记忆(线程级持久化),您需要在创建智能体时指定一个checkpointer。
LangChain的智能体将短期记忆作为您智能体状态的一部分进行管理。通过将这些存储在图的state中,智能体可以访问给定对话的完整上下文,同时保持不同线程之间的分离。使用检查点器将状态持久化到数据库(或内存)中,以便可以随时恢复线程。短期记忆在调用智能体或完成步骤(如工具调用)时更新,并且在每个步骤开始时读取状态。
Copy
from langchain.agents import create_agent
from langgraph.checkpoint.memory import InMemorySaver
agent = create_agent(
"openai:gpt-5",
[get_user_info],
checkpointer=InMemorySaver(),
)
agent.invoke(
{"messages": [{"role": "user", "content": "Hi! My name is Bob."}]},
{"configurable": {"thread_id": "1"}},
)
在生产环境中
在生产环境中,使用由数据库支持的检查点器:Copy
pip install langgraph-checkpoint-postgres
Copy
from langchain.agents import create_agent
from langgraph.checkpoint.postgres import PostgresSaver
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
checkpointer.setup() # auto create tables in PostgresSql
agent = create_agent(
"openai:gpt-5",
[get_user_info],
checkpointer=checkpointer,
)
自定义智能体记忆
默认情况下,智能体使用AgentState 来管理短期记忆,特别是通过 messages 键管理对话历史。
您可以扩展 AgentState 来添加额外的字段。自定义状态模式通过 state_schema 参数传递给 create_agent。
Copy
from langchain.agents import create_agent, AgentState
from langgraph.checkpoint.memory import InMemorySaver
class CustomAgentState(AgentState):
user_id: str
preferences: dict
agent = create_agent(
"openai:gpt-5",
[get_user_info],
state_schema=CustomAgentState,
checkpointer=InMemorySaver(),
)
# Custom state can be passed in invoke
result = agent.invoke(
{
"messages": [{"role": "user", "content": "Hello"}],
"user_id": "user_123",
"preferences": {"theme": "dark"}
},
{"configurable": {"thread_id": "1"}})
常见模式
启用短期记忆后,长对话可能会超过LLM的上下文窗口。常见的解决方案有: 这允许智能体跟踪对话而不超过LLM的上下文窗口。修剪消息
大多数LLM有一个最大支持的上下文窗口(以令牌数计)。 决定何时截断消息的一种方法是计算消息历史中的令牌数,并在接近该限制时进行截断。如果您使用LangChain,可以使用修剪消息工具并指定要从列表中保留的令牌数量,以及用于处理边界的strategy(例如,保留最后max_tokens)。
要在智能体中修剪消息历史,请使用 @before_model 中间件装饰器:
Copy
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig
from typing import Any
@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
"""Keep only the last few messages to fit context window."""
messages = state["messages"]
if len(messages) <= 3:
return None # No changes needed
first_msg = messages[0]
recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
new_messages = [first_msg] + recent_messages
return {
"messages": [
RemoveMessage(id=REMOVE_ALL_MESSAGES),
*new_messages
]
}
agent = create_agent(
model,
tools=tools,
middleware=[trim_messages],
checkpointer=InMemorySaver(),
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""
删除消息
您可以从图状态中删除消息来管理消息历史。 当您想要移除特定消息或清除整个消息历史时,这非常有用。 要从图状态中删除消息,您可以使用RemoveMessage。
要使 RemoveMessage 工作,您需要使用带有 add_messages reducer 的状态键。
默认的 AgentState 提供了这个。
要移除特定消息:
Copy
from langchain.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
Copy
from langgraph.graph.message import REMOVE_ALL_MESSAGES
def delete_messages(state):
return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}
删除消息时,请确保生成的消息历史是有效的。检查您使用的LLM提供商的限制。例如:
- 一些提供商期望消息历史以
user消息开始 - 大多数提供商要求带有工具调用的
assistant消息后面跟着相应的tool结果消息。
Copy
from langchain.messages import RemoveMessage
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.runtime import Runtime
from langchain_core.runnables import RunnableConfig
@after_model
def delete_old_messages(state: AgentState, runtime: Runtime) -> dict | None:
"""Remove old messages to keep conversation manageable."""
messages = state["messages"]
if len(messages) > 2:
# remove the earliest two messages
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
return None
agent = create_agent(
"openai:gpt-5-nano",
tools=[],
system_prompt="Please be concise and to the point.",
middleware=[delete_old_messages],
checkpointer=InMemorySaver(),
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
for event in agent.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values",
):
print([(message.type, message.content) for message in event["messages"]])
for event in agent.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values",
):
print([(message.type, message.content) for message in event["messages"]])
Copy
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! Nice to meet you. How can I help you today? I can answer questions, brainstorm ideas, draft text, explain things, or help with code.'), ('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]
[('human', "what's my name?"), ('ai', 'Your name is Bob. How can I help you today, Bob?')]
总结消息
如上所示,修剪或移除消息的问题在于,您可能会因为删减消息队列而丢失信息。 因此,一些应用程序受益于使用聊天模型总结消息历史的更复杂方法。
SummarizationMiddleware:
Copy
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware
from langgraph.checkpoint.memory import InMemorySaver
from langchain_core.runnables import RunnableConfig
checkpointer = InMemorySaver()
agent = create_agent(
model="openai:gpt-4o",
tools=[],
middleware=[
SummarizationMiddleware(
model="openai:gpt-4o-mini",
max_tokens_before_summary=4000, # Trigger summarization at 4000 tokens
messages_to_keep=20, # Keep last 20 messages after summary
)
],
checkpointer=checkpointer,
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob!
"""
SummarizationMiddleware。
访问记忆
您可以通过多种方式访问和修改智能体的短期记忆(状态):工具
在工具中读取短期记忆
使用ToolRuntime 参数在工具中访问短期记忆(状态)。
tool_runtime 参数对工具签名是隐藏的(因此模型看不到它),但工具可以通过它访问状态。
Copy
from langchain.agents import create_agent, AgentState
from langchain.tools import tool, ToolRuntime
class CustomState(AgentState):
user_id: str
@tool
def get_user_info(
runtime: ToolRuntime
) -> str:
"""Look up user info."""
user_id = runtime.state["user_id"]
return "User is John Smith" if user_id == "user_123" else "Unknown user"
agent = create_agent(
model="openai:gpt-5-nano",
tools=[get_user_info],
state_schema=CustomState,
)
result = agent.invoke({
"messages": "look up user information",
"user_id": "user_123"
})
print(result["messages"][-1].content)
# > User is John Smith.
从工具写入短期记忆
要在执行期间修改智能体的短期记忆(状态),您可以直接从工具返回状态更新。 这对于持久化中间结果或使信息对后续工具或提示可访问非常有用。Copy
from langchain.tools import tool, ToolRuntime
from langchain_core.runnables import RunnableConfig
from langchain.messages import ToolMessage
from langchain.agents import create_agent, AgentState
from langgraph.types import Command
from pydantic import BaseModel
class CustomState(AgentState):
user_name: str
class CustomContext(BaseModel):
user_id: str
@tool
def update_user_info(
runtime: ToolRuntime[CustomContext, CustomState],
) -> Command:
"""Look up and update user info."""
user_id = runtime.context.user_id
name = "John Smith" if user_id == "user_123" else "Unknown user"
return Command(update={
"user_name": name,
# update the message history
"messages": [
ToolMessage(
"Successfully looked up user information",
tool_call_id=runtime.tool_call_id
)
]
})
@tool
def greet(
runtime: ToolRuntime[CustomContext, CustomState]
) -> str:
"""Use this to greet the user once you found their info."""
user_name = runtime.state["user_name"]
return f"Hello {user_name}!"
agent = create_agent(
model="openai:gpt-5-nano",
tools=[update_user_info, greet],
state_schema=CustomState,
context_schema=CustomContext,
)
agent.invoke(
{"messages": [{"role": "user", "content": "greet the user"}]},
context=CustomContext(user_id="user_123"),
)
提示
在中间件中访问短期记忆(状态),以基于对话历史或自定义状态字段创建动态提示。Copy
from langchain.messages import AnyMessage
from langchain.agents import create_agent, AgentState
from typing import TypedDict
class CustomContext(TypedDict):
user_name: str
from langchain.agents.middleware import dynamic_prompt, ModelRequest
def get_weather(city: str) -> str:
"""Get the weather in a city."""
return f"The weather in {city} is always sunny!"
@dynamic_prompt
def dynamic_system_prompt(request: ModelRequest) -> str:
user_name = request.runtime.context["user_name"]
system_prompt = f"You are a helpful assistant. Address the user as {user_name}."
return system_prompt
agent = create_agent(
model="openai:gpt-5-nano",
tools=[get_weather],
middleware=[dynamic_system_prompt],
context_schema=CustomContext,
)
result = agent.invoke(
{"messages": [{"role": "user", "content": "What is the weather in SF?"}]},
context=CustomContext(user_name="John Smith"),
)
for msg in result["messages"]:
msg.pretty_print()
Output
Copy
================================ Human Message =================================
What is the weather in SF?
================================== Ai Message ==================================
Tool Calls:
get_weather (call_WFQlOGn4b2yoJrv7cih342FG)
Call ID: call_WFQlOGn4b2yoJrv7cih342FG
Args:
city: San Francisco
================================= Tool Message =================================
Name: get_weather
The weather in San Francisco is always sunny!
================================== Ai Message ==================================
Hi John Smith, the weather in San Francisco is always sunny!
模型调用前
在@before_model 中间件中访问短期记忆(状态),以在模型调用之前处理消息。
Copy
from langchain.messages import RemoveMessage
from langgraph.graph.message import REMOVE_ALL_MESSAGES
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import before_model
from langgraph.runtime import Runtime
from typing import Any
@before_model
def trim_messages(state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
"""Keep only the last few messages to fit context window."""
messages = state["messages"]
if len(messages) <= 3:
return None # No changes needed
first_msg = messages[0]
recent_messages = messages[-3:] if len(messages) % 2 == 0 else messages[-4:]
new_messages = [first_msg] + recent_messages
return {
"messages": [
RemoveMessage(id=REMOVE_ALL_MESSAGES),
*new_messages
]
}
agent = create_agent(
model,
tools=tools,
middleware=[trim_messages]
)
config: RunnableConfig = {"configurable": {"thread_id": "1"}}
agent.invoke({"messages": "hi, my name is bob"}, config)
agent.invoke({"messages": "write a short poem about cats"}, config)
agent.invoke({"messages": "now do the same but for dogs"}, config)
final_response = agent.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
"""
================================== Ai Message ==================================
Your name is Bob. You told me that earlier.
If you'd like me to call you a nickname or use a different name, just say the word.
"""
模型调用后
在@after_model 中间件中访问短期记忆(状态),以在模型调用之后处理消息。
Copy
from langchain.messages import RemoveMessage
from langgraph.checkpoint.memory import InMemorySaver
from langchain.agents import create_agent, AgentState
from langchain.agents.middleware import after_model
from langgraph.runtime import Runtime
@after_model
def validate_response(state: AgentState, runtime: Runtime) -> dict | None:
"""Remove messages containing sensitive words."""
STOP_WORDS = ["password", "secret"]
last_message = state["messages"][-1]
if any(word in last_message.content for word in STOP_WORDS):
return {"messages": [RemoveMessage(id=last_message.id)]}
return None
agent = create_agent(
model="openai:gpt-5-nano",
tools=[],
middleware=[validate_response],
checkpointer=InMemorySaver(),
)
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.